The low-density lipoprotein class A module of the relaxin receptor (leucine-rich repeat containing G-protein coupled receptor 7): its role in signaling and trafficking to the cell membrane.
نویسندگان
چکیده
The relaxin receptor (LGR7, relaxin family peptide receptor 1) is a member of the leucine-rich repeat containing G protein-coupled receptors subgroup C. This and the LGR8 (relaxin family peptide receptor 2) receptor are unique in having a low-density lipoprotein class A (LDL-A) module at their N termini. This study was designed to show the role of the LDL-A in LGR7 expression and function. Point mutants for the conserved cysteines (Cys(47) and Cys(53)) and for calcium binding asparagine (Asp(58)), a mutant with deleted LDL-A domain and chimeric LGR7 receptor with LGR8 LDL-A all showed no cAMP response to human relaxins H1 or H2. We have shown that their cell surface delivery was uncompromised. The mutation of the putative N-linked glycosylation site (Asn(36)) decreased cAMP production and reduced cell surface expression to 37% of the wild-type LGR7. All point mutant, chimeric, and wild-type receptor proteins were expressed as the two forms. The immature or precursor form of the receptor was 80 kDa, whereas the mature receptor, delivered to the cell surface was 95 kDa. The glycosylation mutant was also expressed as two forms with appropriately smaller molecular masses. Deletion of the LDL-A module resulted in expression of the mature receptor only. These data suggest that the LDL-A module of LGR7 influences receptor maturation, cell surface expression, and relaxin-activated signal transduction.
منابع مشابه
The complex binding mode of the peptide hormone H2 relaxin to its receptor RXFP1
H2 relaxin activates the relaxin family peptide receptor-1 (RXFP1), a class A G-protein coupled receptor, by a poorly understood mechanism. The ectodomain of RXFP1 comprises an N-terminal LDLa module, essential for activation, tethered to a leucine-rich repeat (LRR) domain by a 32-residue linker. H2 relaxin is hypothesized to bind with high affinity to the LRR domain enabling the LDLa module to...
متن کاملRecombinant RXFP1-LDL-A module does not form dimers.
The Relaxin receptor, RXFP1, is a complex G-protein coupled receptor (GPCR). It has a rhodopsin-like 7 transmembrane helix region and a large ecto-domain containing Leucine-rich repeats and a Low Desnsity Lipoprotein Class-A module at the N-terminus. RXFP1 and the closely related receptor for INSL3, RXFP2 are the only mammalian GPCRs to contain an LDL-A module. The LDL-A module has been shown t...
متن کاملRelaxin-3/insulin-like peptide 5 chimeric peptide, a selective ligand for G protein-coupled receptor (GPCR)135 and GPCR142 over leucine-rich repeat-containing G protein-coupled receptor 7.
Relaxin-3, the most recently identified member of relaxin/insulin family, is an agonist for leucine-rich repeat-containing G protein-coupled receptor (LGR)7, GPCR135, and GPCR142. LGR7 can be pharmacologically differentiated from GPCR135 and GPCR142 by its high affinity for relaxin. Selective ligands that specifically activate GPCR135 or GPCR142 are highly desirable for studying their functiona...
متن کاملG-protein Coupled Receptor Dimerization
A growing body of evidence suggests that GPCRs exist and function as dimers or higher oligomers. The evidence for GPCR dimerization comes from biochemical, biophysical and functional studies. In addition, researchers have shown the occurrence of heterodimerization between different members of the GPCR family. Two receptors can interact with each other to make a dimer through their extracellular...
متن کاملRelaxin promotes prostate cancer progression.
PURPOSE To understand the role of relaxin peptide in prostate cancer, we analyzed the expression of relaxin and its receptor in human prostate cancer samples, the effects of relaxin signaling on cancer cell phenotype in vitro, and the effects of increased serum relaxin concentrations on cancer progression in vivo. EXPERIMENTAL DESIGN The relaxin and its receptor leucine-rich repeat containing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Endocrinology
دوره 148 3 شماره
صفحات -
تاریخ انتشار 2007